
COP 3223: C Programming (Functions – Part 1) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Functions In C – Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Functions – Part 1) Page 2 © Dr. Mark J. Llewellyn

Functions In C
• Most computer programs that solve real-world problems are

much larger than the programs we have seen so far in this

course.

• Software engineering has shown that the best way to approach

writing large computer programs is a modular approach.

• A modular approach constructs the program from smaller

pieces or modules, each of which is more manageable than a

single large program.

• While we have not yet written programs using modules, we

have shown you how to approach solving the problem and

constructing your programs in a modular fashion, by first

writing and testing small portions of your solution/code before

moving on to other parts of the problem/program.

COP 3223: C Programming (Functions – Part 1) Page 3 © Dr. Mark J. Llewellyn

Functions In C
• In C, these modules are called functions. Most C programs are

constructed by combining new functions that you write with

“prepackaged” functions available in the C Standard Library.

• So far in this semester, you have only written main functions

yourself and called many different functions from the standard

library, e.g., printf, scanf, fscanf, fprintf, etc..

Although the C Standard Library functions are not technically a

part of the C language and are handled by the preprocessor

before compilation occurs, they are nonetheless included with

standard C systems and many programmers simply believe that

they are part of the C language.

COP 3223: C Programming (Functions – Part 1) Page 4 © Dr. Mark J. Llewellyn

Functions In C
• Functions are invoked (often referred to as called), by a

function call, which specifies the function name and provides

information (as arguments to the function) that the called

function needs in order to perform its designated task.

• In C, everything is a function (including main), so functions

call other functions to have tasks performed for them.

• In general:

– A function performs some task.

– A function may or may not need information (arguments) to perform its

task.

– A function may or may not return a value (or perhaps values).

– A function can be called any number of times.

COP 3223: C Programming (Functions – Part 1) Page 5 © Dr. Mark J. Llewellyn

Functions In C
• Functions are invoked (often referred to as called), by a

function call, which specifies the function name and provides

information (as arguments to the function) that the called

function needs in order to perform its designated task.

• In C, everything is a function (including main), so functions

call other functions to have tasks performed for them.

• Good functional programming operates using a principle

known as information hiding. In a functional setting,

information hiding means that, I (as a caller of the function)

know what kind of task the function can perform for me and

what information I need to send to it in order for it to perform

its task, BUT, I do not know how the function goes about

actually performing the task; that information is hidden from

me by the function.

COP 3223: C Programming (Functions – Part 1) Page 6 © Dr. Mark J. Llewellyn

Functions In C
• Consider the following analogy to help you understand how

function calling works:

Suppose that you dial a 411 operator to find out the phone number for

a nice restaurant you’ve heard about that you want to call to make a

reservation to take your girlfriend/boyfriend to dinner. You call

411 (consider 411 to be a function) and give them the name of the

restaurant (the value of the argument the function needs to operate).

The 411 operator, somehow finds the number for the restaurant (you

don’t really know how they did it), and tells you the number for the

restaurant (the function’s return value).

Basically think of a function as a “black box”. You know what it does (i.e., the service it

provides), but you have no idea how it accomplishes its task. This information hiding

principle is very important to the programmer’s flexibility. In this manner, you are free to

modify how the function works, without requiring any program that uses the function to

be modified in any way.

COP 3223: C Programming (Functions – Part 1) Page 7 © Dr. Mark J. Llewellyn

Functions In C

411 Function

Number for Chez Jacques?

Argument value

Return value

That number is 555-1234

COP 3223: C Programming (Functions – Part 1) Page 8 © Dr. Mark J. Llewellyn

Defining Functions In C
• The general form of a function definition in C is:

• The return-type of a function is the type of value that the

function returns. Recall that all of our main functions have

returned a value of type int.

• A function in C cannot return an array.

• Specifying that the return type is void indicates that the

function does not return a value.

return-type function-name (parameters) {

declarations

statements

}

COP 3223: C Programming (Functions – Part 1) Page 9 © Dr. Mark J. Llewellyn

Defining Functions In C

• Inside the parentheses of a function definition is a list of

parameters. Each parameter is preceded by its type definition

and multiple parameters are separated by commas.

• NOTE: the type for each parameter must be explicitly

listed, even when several parameters have the same type.

• If the function requires no parameters, the keyword void,

should appear in the parentheses.

return-type function-name (parameters) {

declarations

statements

}

COP 3223: C Programming (Functions – Part 1) Page 10 © Dr. Mark J. Llewellyn

Defining Functions In C

• Functions can be thought of as little programs in and of themselves.

Therefore, to accomplish the task that a function is to perform, it may

require variables. These variables must be declared inside the

function definition and they cannot be seen, examined, modified, or

used in any way outside of the function in which they are declared.

• Variables declared inside a function are said to be local to that

function.

• NOTE: The parameters to a function are also considered to be

local variables.

return-type function-name (parameters) {

declarations

statements

}

COP 3223: C Programming (Functions – Part 1) Page 11 © Dr. Mark J. Llewellyn

Defining Functions In C
• Let’s write a simple program that includes a function that will

calculate xy and return the value of this to the caller. This was

basically the last problem on the exam.

• Notice that our function, let’s call it power, will require two

parameters, both of which are of the int type, and we expect it

to return a value which is also an int type.

• Let’s write the function first, and then include it in a program.

COP 3223: C Programming (Functions – Part 1) Page 12 © Dr. Mark J. Llewellyn

Defining Functions In C

int power (int x, int y)

{

int i; //loop control variable

int result; //the value of xy to return

result = 1; //initialize result

for (i = 1; i <= y; ++i) {

result += x * x;

}//end for stmt

return result;

}//end function power

COP 3223: C Programming (Functions – Part 1) Page 13 © Dr. Mark J. Llewellyn

This is basically the same

technique that I used on the

exam key to solve this problem.

The function call

The function definition

COP 3223: C Programming (Functions – Part 1) Page 14 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Functions – Part 1) Page 15 © Dr. Mark J. Llewellyn

Calling Functions In C
• Function definitions contain a return type for the function

and the type of each parameter to the function.

• The parameters in the function definition are referred to as
formal parameters.

• When a call is made to a function, no direct reference is
made to either the return type of the function nor to the
types of the individual parameters.

• The call to the function must contain the same number of
parameters, referred to as actual parameters, as the
function definition and their types must match in a 1:1
correspondence to the formal parameters.

• The function call must be used in a manner so that the type
of value returned is consistent with its use.

COP 3223: C Programming (Functions – Part 1) Page 16 © Dr. Mark J. Llewellyn

Calling Functions In C
• Let’s look more closely at the function definition and the

function call in the program on page 13.

The function definition on line 8

int power (int x, int y)

The function call on line 25

printf(“…%d\n”, power(number1, number2));

Return

type Parameter

types

Formal

parameters

return int type
int type actual parameter

number1 corresponds to

formal parameter x

int type actual parameter

number2 corresponds to

formal parameter y

COP 3223: C Programming (Functions – Part 1) Page 17 © Dr. Mark J. Llewellyn

Calling Functions In C
• Let’s suppose at the time of the call to function power, that the

variable number1 = 4 and the variable number2 = 3. The

values of the actual parameters are copied into the formal

parameters at the time of the function call.

int power (int x, int y)

printf(“…%d\n”, power(number1, number2));

definition

call

4
3

Return 64

COP 3223: C Programming (Functions – Part 1) Page 18 © Dr. Mark J. Llewellyn

Defining Functions In C

• To consider how the principle of information hiding is

applied to functions, let’s revisit the program we just wrote

that used a function to compute the value of xy.

• In our first version of the program the function computing

the value of xy used a for loop and calculated xy by

repeatedly multiplying x by itself y times.

• The second version of the program shown on the next page

solves exactly the same problem, but the function uses an

entirely different approach to calculate the value of xy. In

the second version the function just calls the pow function

found in the math.h library.

COP 3223: C Programming (Functions – Part 1) Page 19 © Dr. Mark J. Llewellyn

Notice that the way the function power

determines the value to return has

changed drastically, but the “interface”,

the way it appears on the outside, has

not changed. No changes were made,

at all, in the main function where
power was called.

COP 3223: C Programming (Functions – Part 1) Page 20 © Dr. Mark J. Llewellyn

Writing Functions In C
• Remember way back when we first started looking at repetition

structures in C (seems like a long time ago now doesn’t it – but

it was actually only 1 month ago almost to the day!); one of our

first examples was computing the sum of the first n integers.

• Let’s create a program that uses a function to generate the sum

of the first n integers, where the function will return an integer

value and requires a single integer parameter which is the value

of n. The main function will simply ask the user to enter the

value of n and print out the result returned from the function.

• We’ll write two versions of the program which differ only in

how the function is called.

COP 3223: C Programming (Functions – Part 1) Page 21 © Dr. Mark J. Llewellyn

In this version of the program the

function call is used as a

parameter to a printf statement.

Notice that the conversion specifier

(%d) must match the return type of

the function.

COP 3223: C Programming (Functions – Part 1) Page 22 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Functions – Part 1) Page 23 © Dr. Mark J. Llewellyn

Same program, the difference is how

the function call is made. In this

case, the function call is used on the

right side of an assignment

statement. Note that the variable on

the left hand side of the assignment

must be an int type to match the

return type of the function.

COP 3223: C Programming (Functions – Part 1) Page 24 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Functions – Part 1) Page 25 © Dr. Mark J. Llewellyn

Practice Problems
1. Modify the example on page 3 so that the user is repeatedly

asked to enter two integer values and the result is displayed,
until the user enters a value of -999 for either x or y, at which
point the program terminates. different happens.

COP 3223: C Programming (Functions – Part 1) Page 26 © Dr. Mark J. Llewellyn

Practice Problems
2. Modify your solution to the leap problem from assignment #2 so

that a function is used to determine if the current year being
considered within the range of years in question is a leap year,
or not.

COP 3223: C Programming (Functions – Part 1) Page 27 © Dr. Mark J. Llewellyn

Practice Problems
3. Write a C program that uses two functions each of which accept

3 integer values as parameters and one of the functions returns
the smallest value of the 3 parameters and the other function
returns the largest of the three parameters. The main function
should then print the three values in ascending order.

